Prognosis of multiple sclerosis disease using data mining approaches random forest and support vector machine based on genetic algorithm
Authors
Abstract:
Background: Multiple sclerosis (MS) is a degenerative inflammatory disease which is most commonly diagnosed by magnetic resonance imaging (MRI). But, since the MRI device uses of a magnetic field, if there are metal objects in the patient's body, it can disrupt the health of the patient, the functioning of the MRI, and distortion in the images. Due to limitations of using MRI device, screening seems necessary for those patients who have metal objects in their bodies. Therefore, this study is carried out to compare two models: support vector machine and random forest. Methods: This analytical-modelling research was implemented on MS data collection, the specifications of which are recorded in health registry system in School of Public Health, Kermanshah University of Medical Sciences, Iran, from May 2017 to August 2018. For the purpose of this study, a total of 317 subjects were selected as a sample; 188 subjects were diagnosed with MS and 128 subjects showed no symptoms of MS. In order to fit the support vector machine (SVM) model, radial basis kernel function was used. The parameters of this machine were optimized with genetic algorithm. After this step, the support vector machine and random forest (RF) were compared with respect to three factors: accuracy, sensitivity, and specificity. Results: Based upon the obtained results of study, accuracy, sensitivity, and specificity of SVM were 0.79, 0.80, and 0.78, respectively. In comparison, accuracy, sensitivity, and specificity of RF were found to be 0.76, 0.81, and 0.70, respectively. Conclusion: In general, both models which were compared in current study showed desirable performance; however, in term of accuracy, as an important criteria for performance comparison in this area of research, it can be argued that support vector machine can do better than random forest in diagnosing multiple sclerosis.
similar resources
Improvement of Support Vector Machine and Random Forest Algorithm in Predicting Khorramabad River Flow Uusing Non-uniform De-Noising of data and Simplex Algorithm
In this study, in order to simulate the monthly flow of the Khorramabad River, the time series of this river was decomposed into three levels using the wavelet of Daubechies-3, during the period of 1955-2014. Based on this, it was found that there is a Non-uniform noise that includes two periods of time in this signal, with the October 2008 border which required that the signal be become non-un...
full textForecasting Stock Price Movements Based on Opinion Mining and Sentiment Analysis: An Application of Support Vector Machine and Twitter Data
Today, social networks are fast and dynamic communication intermediaries that are a vital business tool. This study aims at examining the views of those involved with Facebook stocks so that we can summarize their views to predict the general behavior of this stock and collectively consider possible Facebook stock price movements, and create a more accurate pattern compared to previous patterns...
full textPredicting Disease Risks Using Feature Selection Based on Random Forest and Support Vector Machine
Disease risk prediction is an important task in biomedicine and bioinformatics. To resolve the problem of high-dimensional features space and highly feature redundancy and to improve the intelligibility of data mining results, a new wrapper method of feature selection based on random forest variables importance measures and support vector machine was proposed. The proposed method combined seque...
full textMonthly rainfall Forecasting using genetic programming and support vector machine
Rainfall and runoff estimation play a fundamental and effective role in the management and proper operation of the watershed, dams and reservoirs management, minimizing the damage caused by floods and droughts, and water resources management. The optimal performance of intelligent models has increased their use to predict various hydrological phenomena. Therefore, in this study, two intelligent...
full textHeart Rate Variability Classification using Support Vector Machine and Genetic Algorithm
Background: Electrocardiogram (ECG) is defined as an electrical signal, which represents cardiac activity. Heart rate variability (HRV) as the variation of interval between two consecutive heartbeats represents the balance between the sympathetic and parasympathetic branches of the autonomic nervous system.Objective: In this study, we aimed to evaluate the efficiency of discrete wavelet transfo...
full textMultiple Sclerosis Lesions Segmentation in Magnetic Resonance Imaging using Ensemble Support Vector Machine (ESVM)
Background: Multiple Sclerosis (MS) syndrome is a type of Immune-Mediated disorder in the central nervous system (CNS) which destroys myelin sheaths, and results in plaque (lesion) formation in the brain. From the clinical point of view, investigating and monitoring information such as position, volume, number, and changes of these plaques are integral parts of the controlling process this dise...
full textMy Resources
Journal title
volume 77 issue 1
pages 33- 40
publication date 2019-04
By following a journal you will be notified via email when a new issue of this journal is published.
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023